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Introduction > CLIP zero-shot inference

> CLIP has shown its strong transferability plane  car

o It was pre-trained on 400M image-text pairs
o It shows promising zero-shot abillity [CLS] | this

> Adaptation of CLIP in downstream tasks

o Full-model fine-tuning
m [Ime-consuming, require heavy computes
m Not scalable for multiple tasks

o Adapter-based fine-tuning
m Freeze the whole network
m Design a specific layer and only train it
m Simple and scalable
m Learning ability may be limited
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> An overview of the proposed architecture.
Frozen CLIP

Main Experimental Results on Two Public Pathology Datasets: PCam and MHIST

> Quantitative results on the hold-out test set of PCam. > Performance and Complexity comparison on PCam!"

Algorithm  Data Usage | Accuracy Recall Precision Fl-score AUC Data Usage Algorithm Accuracy Training Time
CLIP Zero-shot 56.5 2.3 57.4 53.7 0.600
Zero-shot CLIP 36.5 -
0.1% 76.4 90.0 10.7 79.2 0.849
0.5% 81.5 85.0 79.4 82.1 0.894 0.1% CLIP + CoOp 64.3 7 min 6 sec
CLIP + REC 1% 81.9 82.9 81.3 82.1 0.900 CLIP + RFC 76.4 10 min 29 sec
3% 82.9 i1 87.2 81.8 0.918 ,
10% 828 792 854 821 0914 1% CLIP +CoOp | 61.9 53 min 21 sec
50% 814 710 896 793 0918 CLIP + RFC 81.9 11 min 56 sec
10% CLIP + CoOp 39.9 2 h 23 min 45 sec
CLIP + RFC 82.8 27 min 18 sec
> Quantitative results on the hold-out test set of MHIST.*
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